ICO smart contracts Documentation
Release 0.1

Mikko Ohtamaa

Sep 16, 2019

Contents:

1 Introduction

2 Contracts

3 Installation

4 Command line commands

5 Interacting with deployed smart contracts
6 Contract source code verification

7 Test suite

8 Chain configuration

9 Design choices

10 Other

11 Commercial support

12 Links

11

17

39

41

43

47

49

51

53

ICO smart contracts Documentation, Release 0.1

This is a documentation for ICO package providing Ethereum smart contracts and Python based command line tools
for launching your ICO crowdsale or token offering.

ICO stands for a token or cryptocurrency initial offering crowdsale. It is a common method in blockchain space,
decentralized applications and in-game tokens for bootstrap funding of your project.

This project aims to provide standard, secure smart contracts and tools to create crowdsales for Ethereum blockchain.

Contents: 1

https://github.com/tokenmarketnet/ico
https://tokenmarket.net/what-is/ico

ICO smart contracts Documentation, Release 0.1

2 Contents:

CHAPTER 1

Introduction

* About

* Quick links

* About the project
* Token sales

* Support

* Audit reports

1.1 About

This package contains Ethereum smart contracts and command line toolchain for launching and managing token sales.

1.2 Quick links

STO - security token tool chain - a lot of new development work happens in this security token specific project that
users smart contracts from this repository

TokenMarket website
Github issue tracker and source code

Documentation

https://gitter.im/TokenMarketNet/ico?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://docs.tokenmarket.net
https://tokenmarket.net
https://github.com/tokenmarketnet/ico
https://ico.readthedocs.io/en/latest/

ICO smart contracts Documentation, Release 0.1

1.3 About the project

This project aims to provide standard, secure smart contracts and tools to create crowdsales for Ethereum blockchain.
This package provides

* Token contracts for security and utility tokens

* Automated test suite in Python

* Deployment tools and scripts

1.4 Token sales

These contracts have been tested, audited and used by several projects. Below are some notable token sales that we
have used these contracts

* AppCoins
* Civic
* Storj
* Monaco
¢ DENT
* Ethos
* ixLedger
e ... and many more!
We also have third party token sales using these smart contracts

e Dala

1.5 Support

TokenMarket can be a launch and hosting partner for your token sale. We offer advisory, legal, technical and marketing
services. For more information see TokenMarket fundraising services.

Community support is available on the best effort basis - your mileage may vary. To get the most of the community
support we expect you to be on a senior level of Solidity, Python and open source development. Meet us at the Gitter
support chat.

1.6 Audit reports

Some public audit reports available for some revisions of this codebase:
* For Atonomi by LevelK, May 2018
¢ For Dala by losiro, October 2017
* For Civic by Zeppelin, June 2017

More audit reports available on a request.

4 Chapter 1. Introduction

https://appcoins.io/
https://www.civic.com/
https://storj.io/
https://mona.co/
https://dentcoin.com/
https://www.ethos.io/
https://medium.com/ixledger
https://github.com/GetDala/dala-smart-contracts
https://tokenmarket.net/
https://gitter.im/TokenMarketNet/ico
https://gitter.im/TokenMarketNet/ico
https://drive.google.com/file/d/0B6r9uCgN_xpJeUdRaGxaQ3VrTVBiekg5V25aUEUycDVZWlhn/view?usp=sharing
https://www.iosiro.com/dala-token-sale-audit
https://medium.com/@ZeppelinOrg/a91754ab6e4b

CHAPTER 2

Contracts

e Introduction

* Preface

* TODO

2.1 Introduction

This chapter describers Ethereum crowdsale smart contracts.

2.2 Preface

* You must understand Ethereum blockchain and Solidity smart contract programming basics

* You must have a running Ethereum full node with JSON-RPC interface enabld

2.3 TODO

http://solidity.readthedocs.io/

ICO smart contracts Documentation, Release 0.1

6 Chapter 2. Contracts

CHAPTER 3

Installation

* Preface

o Setting up - OSX

 Setting up - Ubuntu Linux 16.04

e Installing Ethereum node (geth or parity)

* Using your desired Solidity version

* Docker Ganache image

3.1 Preface

Instructions are written in OSX and Linux in mind.
Experience needed
* Basic command line usage

* Basic Github usage

3.2 Setting up - OSX

Packages needed
* Populus native dependencies

Get Solidity compiler. Use version 0.4.12+. For OSX:

brew install solidity

http://populus.readthedocs.io/en/latest/quickstart.html
http://solidity.readthedocs.io/en/develop/installing-solidity.html

ICO smart contracts Documentation, Release 0.1

Clone this repository from Github using submodules:

git clone --recursive git@github.com:TokenMarketNet/ico.git

Python 3.5+ required. See installing Python.

python3.5 —-version
Python 3.5.2

Create virtualenv for Python package management in the project root folder (same as where setup . py is):

python3.5 —-m venv venv

source venv/bin/activate

pip install -r requirements.txt
pip install -e

3.3 Setting up - Ubuntu Linux 16.04

Install dependencies:

sudo apt install -y git build-essential libssl-dev python3 python3-venv python3-
—setuptools python3-dev cmake libboost-all-dev

Python 3.5+ required. Make sure you have a compatible version:

python3.5 —--version
Python 3.5.2

Install Solidity solc compiler:

sudo apt install software-properties—common

sudo add-apt-repository -y ppa:ethereum/ethereum
sudo apt update

sudo apt install -y ethereum solc

Then install ico Python package and its dependencies:

git clone --recursive git@github.com:TokenMarketNet/ico.git
cd ico

python3.5 -m venv venv

source venv/bin/activate

pip install wheel

pip install -r requirements.txt

pip install -e

3.4 Installing Ethereum node (geth or parity)

You need to have Go Ethereum (geth), Parity or some other mean to communicate with Ethereum blockchain.

The default set up assumes you run JSON-RPC in http://localhost:8545 for mainnnet and http://localhost:8547 for
Kovan testnet.

For more information see chain configuration.

8 Chapter 3. Installation

https://www.python.org/downloads/
http://solidity.readthedocs.io/en/develop/installing-solidity.html

ICO smart contracts Documentation, Release 0.1

3.5 Using your desired Solidity version

We recommend using Docker and official Ethereum Solidity docker builds as the static binary like installation for the
compiler.

Example:

This is a supplied shell script wrapper that is honoured by Populus and py-solc,
—packages when they look for solc binary
export SOLC_BINARY= pwd /dockerized-solc.sh

Give the Solidity version we want to use for our Docker wrapper scripts
export SOLC_VERSION=0.4.18

Populus now uses Dockerized solc. Any missing version 1is automatically downloaded,_,
—and cached.
populus compile

Note: Docker volume mounts do not support symbolic links and thus this kind of solc alias behavior might be differnt
from having natively installed solc.

3.6 Docker Ganache image

TokenMarket contracts can optionally be built, run, and tested using Docker (https://www.docker.com/). To be able to
TokenMarket development environment inside Docker, install Docker and docker-compose (https://docs.docker.com/
compose/) first. Then run in ico folder:

docker—compose up

If everything is ok, you will see something like below:

MacBook—-Pro-mac:docs mac$ docker-compose up
WARNING: The Docker Engine you're using is running in swarm mode.

Compose does not use swarm mode to deploy services to multiple nodes in a swarm. All
—containers will be scheduled on the current node.

To deploy your application across the swarm, use “docker stack deploy' .

Starting ganache-cli ... done

Starting tkn ... done

Attaching to ganache-cli, tkn

ganache-cli Ganache CLI v6.1.0-beta.l (ganache-core: 2.1.0-beta.l)
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli

Available Accounts

0xab2d52942a9875143e94e9fe09a548a45dceble8
0xdcd4b3cc214b77407ef77£3fa38108a2ded48d0ct7
0xaf98bl65c2dcadc8el7a717b795eeb6dcacf0d306
Oxeebbelc68201d2fc58e07a2¢c3619377ea742d0ad
0xa050538c2203055a82bdfc18004¢c872095283362

|
|
|
|
|
|
|
|
|
| 0x7b3fe777be5e6b4903580657ad3792d55e31d0£7

g w N O

(continues on next page)

3.5. Using your desired Solidity version 9

https://www.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
ganache-cli
—hawk ahead
ganache-cli
ganache-cli
ganache-cli
ganache-cli

O 00 J o

Private Keys

W 0 J o U b W+ O

HD Wallet

Mnemonic:
split reopen
Base HD Path:

0xc198cf10296d1ed5df408f94890fd57dbad4750c
O0xf2dc5blb4ba8465aacd47484ae9dd0£f£09844cc27
0xe84316460040659815525165487d436£f047fad78
0x1be235ca98cd4a56be34218e8b3265bellbd3f0a

29b65e26c903d588£5706d7850cf125f78bef030a993b2a36db859%9e9fladac3e
c7b0146725f16d0e261289e1183304e2£829990bafd695d444b93af995e5c7d7
2dfb4b4e054cc9881eell70ce5278c65b52e9a5e2afalf2882376adcd4a339%af
00e9470ce3cl3cbdbc60e4f2a6c284245f£47a3595d139%bef6e04ab3007097e3
613d14fb4045ee80a30649%beedc75d82b7478dab2e834e544e8d4eda8dal915¢c
8705¢cfdad9b76911fb74ce2blc704f172070b95e75e4c467e08b99142d531c06
Oacaf2b8a74aac3a38406e6ad4bcdf£6229c2130d1d9%e526c7£f7a56d5b35e93244
b3d28e482d9%e1aa3ae696b7£20261200bc077f4771bdb4e20227825603e94575
3e89a5e223e0919b2b0b61c71590af0f6e96fb0alc82e0e3ec7a390314b7ded3
6bc7b7209dd5a06cf89876efece6dfd6524£49d£f039d822d15beaac91lafb4dl’

great lunch cushion melt remind harvest taxi prosper,

m/44'/60'/0'"/0/{account_index}

Listening on localhost:8545

eth_getBalance

To login into dockerized TokenMarket environment:

docker exec —-it tkn /bin/bash

To deploy contract from

inside

dockerized ico environment

0xab2d52942a9875143e94e9fe(09a548a45dceblel):

(example for Ganache chain address

python3 ico/cmd/deploycontracts.py --deployment-file crowdsales/crowdsale-token—
—example—ganache.yml —--deployment—-name local-token —-—-address,
—0xab2d52942a9875143e94e9fe09%9a548a45dceble8

The following folders & filles are mapped as volumes so you can edit them from outside Docker and compile/run tests

inside Docker:

contracts
crowdsales
zeppelin

ico

populus. json

10

Chapter 3. Installation

CHAPTER 4

Command line commands

e Introduction
* deploy-contracts
* deploy-token
* distribute-tokens

e token-vault

e combine-csvs

4.1 Introduction

ico package provides tooling around deploying and managing token sales and related tasks.

Here are listed some of the available command line commands. For full list see setup.py [console-scripts]
section.

All commands read populus.json file for the chain configuration from the current working directory. The chain config-
uration should set up a Web3 HTTP provider how command line command talks to an Ethereum node. The Ethereum
node must have an address with ETH balance for the operations. For more information see Chain configuration.

The most important command is deploy-contracts that allows scripted and orchestrated deployment of multiple related
Ethereum smart contracts.

4.2 deploy-contracts

Scripted deployment of multiple related Ethereum smart contracts.

* Deploy contracts

11

https://github.com/TokenMarketNet/ico/blob/master/setup.py#L61

ICO smart contracts Documentation, Release 0.1

* Automatically verify contracts on EtherScan

 Link contracts together

e Set common parameters

* Verify contracts have been deployed correctly through assert mechanism
See also Contract source code verification.
Example YAML deployment scripts

e allocated-token-sale (based on DENT)

e dummy mintable token sale example

Help:

Usage: deploy-contracts [OPTIONS]
Makes a scripted multiple contracts deployed based on a YAML file.

Reads the chain configuration information from populus.json. The resulting
deployed contracts can be automatically verified on etherscan.io.

Example files:

*» https://github.com/TokenMarketNet/ico/blob/master/crowdsales/crowdsale-
token—-example.yml

*» https://github.com/TokenMarketNet/ico/blob/master/crowdsales/allocated-
token-sale—-example.yml

» https://github.com/TokenMarketNet/ico/blob/master/crowdsales/example.yml
Options:

——deployment-name TEXT Project section id inside the YAML file. The topmost
YAML key. Example YAML files use "mainnet" or

"kovan". [required]

——deployment-file TEXT Deployment script YAML .yml file to process
[required]

——address TEXT Your Ethereum account that is the owner of

deployment and pays the gas cost. This account must
exist on Ethereum node we connect to. Connection
parameteres, port and IP, are defined in
populus. json. [required]

—-help Show this message and exit.

4.3 deploy-token

Deploy a single token contract.

Warning: This command is depracated. Instead, use deploy-contracts command. See example here.

Example usage:

12 Chapter 4. Command line commands

https://github.com/TokenMarketNet/ico/blob/master/crowdsales/allocated-token-sale-example.yml
https://github.com/TokenMarketNet/ico/blob/master/crowdsales/example.yml
https://github.com/TokenMarketNet/ico/blob/master/crowdsales/crowdsale-token-example.yml

ICO smart contracts Documentation, Release 0.1

deploy-token —-help
Usage: deploy-token

[OPTIONS]

Deploy a single crowdsale token contract.
Examples:

deploy-token —-chain=ropsten
——address=0x3c2d4e5eae8c4a3lccc56075b5fd81307b1627¢c6
2.0" ——-symbol=MOO --release-—

agent=0x3c2d4e5eae8c4a31lccc56075b5£d81307b1627c6

——name="MikkoToken
——supply=100000
deploy-token --chain=kovan —--contract-name="CentrallyIssuedToken"

——address=0x001FC7d7E506866aEAB82C11dA515E9DD6D02¢c25 ——-name="TestToken"
——symbol=MOO --supply=916 —--decimals=0 —--verify —-verify-

filename=CentrallyIssuedToken.sol

Options:
——chain TEXT
——address TEXT

——contract-name TEXT
——release—agent TEXT

--minting-agent TEXT

——name TEXT

——symbol TEXT

——supply INTEGER
——decimals INTEGER
--verify / —-no-verify
—--verify-filename TEXT

——master—-address TEXT
—-—help

On which chain to deploy - see populus.json
Address to deploy from and who becomes as a owner
(must exist on geth) [required]
Name of the token contract

Address that acts as a release agent
owner)

Address that acts as a minting agent
owner)

Token name [required]

Token symbol [required]

Initial token supply (multipled with decimals)
How many decimal points the token has

Verify contract on EtherScan.io

Solidity source file of the token contract for
verification

Move tokens and upgrade master to this account
Show this message and exit.

(can be same as

(can be same as

4.4 distribute-tokens

Help:

Usage: distribute-tokens

[OPTIONS]

Distribute tokens to centrally issued crowdsale participant or bounty

program participants.

Reads in
tokens.

specifier. E.g.

distribution data as CSV. Then uses Issuer contract to distribute
All token counts are multiplied by token contract decimal
if CSV has amount 15.5,

token has 2 decimal places, we

will issue out 1550 raw token amount.

To speed up the issuance,

transactions are verified in batches. Each batch

is 16 transactions at a time.

Example (first run):

(continues on next page)

4.4. distribute-tokens

13

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

Example

distribute-tokens —--chain=kovan
——address=0x001FC7d7E506866aEAB82C11dA515E9DD6D02c25
——token=0x1644a421ae0a0869%pacl27fadcce8513bd666705 ——-master—
address=0x9a60ad6del85c4ea95058601beafl6f63742782a ——csv—
file=input.csv —--allow-zero --address-column="Ethereum address"
——amount—-column="Token amount"

(second run, continue after first run was interrupted):
distribute-tokens —--chain=kovan
——address=0x001FC7d7E506866aEAB82C11dA515E9DD6D02c25
——token=0x1644a421ae0al0869bacl27fadcce8513bd666705 ——-csv—
file=input.csv —-—allow-zero —-—-address-column="Ethereum address"

——amount-column="Token amount" --issuer-—
address=0x2c9877534f62c8b40aebcd08ec9£54d20cb0a945

Options:
——chain TEXT
——address TEXT

——token TEXT
—-—csv-file TEXT
——address—column TEXT
——amount—-column TEXT
——1limit INTEGER

—--start-from INTEGER
——issuer—-address TEXT

——master—address TEXT

—--allow-zero / ——no—-allow-zero

——help

On which chain to deploy - see populus.json
The account that deploys the issuer
contract, controls the contract and pays for
the gas fees [required]

Token contract address [required]

CSV file containing distribution data
[required]

Name of CSV column containing Ethereum
addresses

Name of CSV column containing decimal token
amounts

How many items to import in this batch
First row to import (zero based)

The address of the issuer contract - leave
out for the first run to deploy a new issuer
contract

The team multisig wallet address that does
StandardToken.approve () for the issuer
contract

Stops the script if a zero amount row is
encountered

Show this message and exit.

4.5 token-vault

Help:

token-vault —-help

Usage: token-vault [OPTIONS]

TokenVault control script.

1) Deploys a token vault contract

2) Reads in distribution data as CSV

3) Locks vault

(continues on next page)

14

Chapter 4. Command line commands

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

Options:
—-—action TEXT
——chain TEXT

——address TEXT

——token—-address TEXT
—-—csv-file TEXT
——address—-column TEXT

——amount—-column TEXT

—-limit INTEGER

—--start-from INTEGER
—--vault-address TEXT

—-—freeze-ends—at INTEGER

One of: deploy, load, lock

On which chain to deploy - see populus.json
The account that deploys the vault contract,
controls the contract and pays for the gas
fees [required]

Token contract address [required]

CSV file containing distribution data

Name of CSV column containing Ethereum
addresses

Name of CSV column containing decimal token
amounts

How many items to import in this batch
First row to import (zero based)

The address of the vault contract - leave
out for the first run to deploy a new issuer
contract

UNIX timestamp when vault freeze ends for
deployment

——tokens-to-be-allocated INTEGER

——help

Manually verified count of tokens to be set
in the vault
Show this message and exit.

4.6 combine-csvs

Help:

combine-csvs ——help

Usage: combine-csvs [OPTIONS]

Combine multiple token distribution CSV files to a single CSV file good
for an Issuer contract.

- Input is a CSV file having columns Ethereum address, number of tokens
— Round all tokens to the same decimal precision
- Combine multiple transactions to a single address to one transaction
Example of cleaning up one file:

combine-csvs —-—input-file=csvs/bounties-unclean.csv —-—-output-

file=combine.csv —--decimals=8 --address-column="address" —-—-amount-
column="amount"

Another example — combine all CSV files in a folder using zsh shell:
combine-csvs csvs/*.csv(P:——input-file:) —-output-file=combined.csv
——decimals=8 —-—-address-column="Ethereum address" —-—-amount-—

column="Total reward"

Options:

(continues on next page)

4.6. combine-csvs 15

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

——input-file TEXT

—-—output-file TEXT
——decimals INTEGER
——address—column TEXT
——amount-column TEXT
——help

CSV file to read and combine.

multiple times for different files. [required]
A CSV file to write the output [required]

A number of decimal points to
Name of CSV column containing
Name of CSV column containing
Show this message and exit.

It should be given

use [required]
Ethereum addresses
decimal token amounts

16

Chapter 4. Command line commands

CHAPTER B

Interacting with deployed smart contracts

Introduction

— Getting Jupyter Notebook
Transferring tokens
Releasing a token
Transfering tokens

— Etherscan transfer confirmation

— MyEtherWallet transfer confirmation
Setting the actual ICO contract for a pre-ICO contract
Whitelisting crowdsale participants
Change pricing strategy
Test buy token
Halt payment forwarder
Getting data field value for a function call
Set early participant pricing
Move early participant funds to crowdsale
Triggering presale proxy buy contract
Resetting token sale end time
Finalizing a crowdsale

Send ends at

Approving tokens for issuer

17

ICO smart contracts Documentation, Release 0.1

Whitelisting transfer agent

Reset token name and symbol

Read crowdsale variables

Reset token name and symbol

Reset upgrade master

Participating presale

Distributing bounties

Prerequisites

Merge any CSV files

Deploy issuer contract

Give approve() for the issuer contract

Run the issuance

* Extracting Ethereum transaction data payload from a function signature

» Splitting a payment

5.1 Introduction

This chapter shows how one can interact with deployed smart contracts.

Interaction is easiest through a Jupyter Notebook console where you can edit and run script snippets.

18

Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

-2
~ Ju pyter Token tests Last Checkpoint: 2 minutes ago (unsaved changes)
File Edit View Insert Cell Kernel Help

+ %< @B A~ ¢ MW B C Code M CellToolbar

In [1]: import populus
from populus.utils.accounts import is_account_locked
from populus.utils.cli import request_account_unlock
from eth_utils import from wei
from ico.utils import check succesful_ tx

Which network we deployed our contract
chain_name = "mainnet"

Owner account on geth
owner_address = "0xd58550a50161edf805a25431fc0bb850£f£f160bad"

Where did we deploy our token
contract_address = "0x04e4240ba9142209382cdecdcd768£51c3736cd8"

project = populus.Project()
with project.get chain(chain_name) as chain:
web3 = chain.web3

print("Web3 provider is", web3.currentProvider)
print("Owner address is", owner_address)

Goes through geth account unlock process if needed
if is_account_locked(web3, owner_ address):
request_account_unlock(chain, owner_address, None)

transaction = {"from": owner_address}
Contract = chain.get_contract_factory("CrowdsaleToken")

print("Owner balance is", from wei(web3.eth.getBalance(owner_ address),

P Logout

| Python 3 @

"ether"), "ETH")

All snippets will connect to Ethereum node through a JSON RPC provider that has been configured in populus.

json.

5.1.1 Getting Jupyter Notebook

Install it with pip in the activated Python virtual environment:

pip install jupyter

Then start Jupyter Notebook:

jupyter notebook

5.2 Transferring tokens

Example:

from decimal import Decimal

import populus

from populus.utils.accounts import is_account_locked
from populus.utils.cli import request_account_unlock
from eth _utils import from wei

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

(continues on next page)

5.2. Transferring tokens

19

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

Which network we deployed our contract
chain_name = "mainnet"

Owner account on geth
owner_address = "Ox"

Where did we deploy our token

contract_address = "0Ox"
receiver = "0Ox"
amount = Decimal("1.0")

project = populus.Project ()
with project.get_chain(chain_name) as chain:

web3 = chain.web3
print ("Web3 provider is", web3.providers[0])

print ("Owner address 1is", owner_address)

print ("Owner balance is", from_wei (web3.eth.getBalance (owner_address), "ether"),
<"ETH")

Goes through geth account unlock process 1if needed
if is_account_locked(web3, owner_address):
request_account_unlock (chain, owner_address, None)

transaction = {"from": owner_address}
FractionalERC20 = get_contract_by_name (chain, "FractionalERC20")

token = FractionalERC20 (address=contract_address)
decimals = token.call () .decimals ()
decimal_multiplier = 10 xx decimals

print ("Token has", decimals, "decimals")
print ("Owner token balance is", token.call() .balanceOf (owner_address) / decimal_

—multiplier)

Use lowest denominator amount
normalized_amount = int (amount * decimal multiplier)

Transfer the tokens

txid = token.transact ({"from": owner_address}) .transfer (receiver, normalized_
—amount)

print ("TXID is", txid)

check_succesful_tx (web3, txid)

5.3 Releasing a token

See deploy-contracts example how to deploy crowdsale token contracts that have a transfer lock up. The crowdsale
tokens cannot be transferred until the release agent makes the token transferable. As we set our owner address as the
release agent we can do this from Python console.

Then copy and edit the following snippet with your address information:

20 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

import populus

from populus.utils.accounts import is_account_locked
from populus.utils.cli import request_account_unlock
from eth_utils import from_ wei

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

Which network we deployed our contract
chain_name = "ropsten"

Owner account on geth
owner_address = "0Ox3c2d4ebeae8cd4al3lccc56075b5£d81307b1627c6"

Where did we deploy our token
contract_address = "0x513a7437d355293ac92d6912d9%9a8b257a343fb36"

project = populus.Project ()
with project.get_chain(chain_name) as chain:

web3 = chain.web3

print ("Web3 provider is", web3.providers[0])

print ("Owner address 1is", owner_address)

print ("Owner balance 1is", from_wei (web3.eth.getBalance (owner_address), "ether"),
t—)"ETH")

Goes through geth account unlock process if needed
if is_account_locked (web3, owner_address):
request_account_unlock (chain, owner_address, None)

transaction = {"from": owner_address}
Contract = get_contract_by_name (chain, "CrowdsaleToken")
contract = Contract (address=contract_address)

print ("Attempting to release the token transfer")

txid = contract.transact (transaction) .releaseTokenTransfer ()
print ("TXID", txid)

check_succesful_tx (web3, txid)

print ("Token released")

5.4 Transfering tokens

We have deployed a crowdsale token and made it transferable as above. Now let’s transfer some tokens to our friend
in Ropsten testnet.

* We create a Ropsten testnet wallet on MyEtherWallet.com - in this example our MyEtherWallet address is
0x47FcAB60823D13B73F372b689faA9D3e8b0C48b5

* We include our deployed token contract there through Add Custom Token button

* Now let’s transfer some tokens into this wallet through IPython console from our owner account

import populus

from populus.utils.accounts import is_account_locked
from populus.utils.cli import request_account_unlock
from eth _utils import from_ wei

(continues on next page)

5.4. Transfering tokens 21

https://myetherwallet.com/

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

from ico.utils import check_succesful_tx
from ico.utils import get_contract_by_name

Which network we deployed our contract
chain_name = "ropsten"

Owner account on geth
owner_address = "0Ox3c2d4ebeae8cd4al3lccc56075b5fd81307b1627c6"

Where did we deploy our token
contract_address = "0x513a7437d355293ac92d6912d9%9a8b257a343fb36"

The address where we are transfering tokens into
buddy_address = "0x47FcAB60823D13B73F372b689faA9D3e8b0C48b5"

How many tokens we transfer
amount = 1000

project = populus.Project ()
with project.get_chain(chain_name) as chain:

Contract = get_contract_by_name (chain, "CrowdsaleToken")
contract = Contract (address=contract_address)

web3 = chain.web3
print ("Web3 provider is", web3.providers[0])
print ("Owner address is", owner_address)
print ("Owner balance 1is", from_wei (web3.eth.getBalance (owner_address), "ether"),
—"ETH™)
print ("Owner token balance is", contract.call() .balanceOf (owner_address))

Goes through geth account unlock process 1f needed
if is_account_locked (web3, owner_address) :
request_account_unlock (chain, owner_address, None)

transaction = {"from": owner_address}

print ("Attempting to transfer some tokens to our MyEtherWallet account")

txid = contract.transact (transaction) .transfer (buddy_address, amount)

check_succesful_tx (web3, txid)

print ("Transfered", amount, "tokens to", buddy_address, "in transaction https://
—ropsten.etherscan.io/tx/{}".format (txid))

We get output like:

Web3 provider is RPC connection http://127.0.0.1:8546

Owner address is 0x3c2d4ebeae8c4a3lccc56075b5£fd81307b1627c6

Owner balance is 1512.397773239968990885 ETH

Owner token balance is 99000

Attempting to transfer some tokens to our MyEtherWallet account

Transfered 1000 tokens to 0x47FcAB60823D13B73F372b689faA9D3e8b0C48b5 in transaction
—https://ropsten.etherscan.io/tx/
—0x5460742a4£40dd573aeadedde95fc57f££6de800dde9494520c4£7852d7a956d

22 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

5.4.1 Etherscan transfer confirmation

We can see the transaction in the blockchain explorer:

@ E thePscaIl LOGIN m LANGUAGE

HOME BLOCKCHAIN v ACCOUNT v TOKEN v CHART MISC v

Transaction 0x056a15d29508c06da50e16960db2f7618b8fecfod38cdedb710666b9d31513f3

Home / Transactions / Transaction Information

Transaction Information

TxHash: 0x056a15d29508c06da50e16960db27618b8fecfod38cdedb710666b9d31513f3
Block Height: 3447946 (4 block confirmations)

TimeStamp : 1 min ago (Mar-30-2017 09:25:17 PM +UTC)

From: 0xd58550a50161edf805a25431fcObb850ff160bad

To: Contract 0x04e4240ba9142209382cdecdcd768f51c3736cd8 @

1,000 ERC20 TOKEN TRANSFER From 0xd58550a50161edf805a2... to = 0xd460e5e63575c259fbes...

Value: 0 Ether ($0.00)
Gas Limit: 152631
Gas Price: 0.000000021556508092 Ether

Gas Used By Transaction: 52630

Actual Tx Cost/Fee: 0.00113451902088 Ether ($0.06)

5.4.2 MyEtherWallet transfer confirmation

And then finally we see tokens in our MyEtherWallet:

5.4. Transfering tokens 23

https://twitter.com/tokenmarket/status/847556407033573376

ICO smart contracts Documentation, Release 0.1

) MyEtherWallet Open-Source & Client-Side Ether Wallet - v3.5.8 English ~ ETH (MyEtherWallet) ~

Generate Wallet Send Ether & Tokens @Swap Send Offline Contracts View Wallet Info Help

+ Send Ether & Tokens

Account Address Send Transaction

ﬁ To Address

0xD460E5E63575c259Fbe6032d8 ‘
F7F089259A959a0

Amount to Send
Account Balance

0 ETH ‘ ETH ~

Send Entire Balance
Token Balances

O 1000 MOOMOO Gas Limit
Show All Tokens 21000
Add Custom Token +Advanced: Add Data
Generate Transaction
Equivalent Values
0 BTC
0 REP
0 EUR

5.5 Setting the actual ICO contract for a pre-ICO contract

Example setting the ICO contract for a presale:

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()
account = "0xd58550a50161edf805a25431£fc0bb850f£f160bad"

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Contract = get_contract_by_name (chain, "PresaleFundCollector")
contract = Contract (address="0x858759541633d5142855b27f16£f5f67ca78654bf")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = contract.transact ({"from": account}) .setCrowdsale (
—"0xb57d88c2£70150cb688da7bl1d749f1blb4d72f4c")

print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

24 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

Example triggering the funds transfer to ICO:

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()

account = "0xd58550a50161edf805a25431fc0bb850ff160bad"
with p.get_chain("mainnet") as chain:
web3 = chain.web3
Contract = get_contract_by_name (chain, "PresaleFundCollector")

contract = Contract (address="0x858759541633d5142855b27£16£5f67ea78654bf")

if is_account_locked(web3, account):
request_account_unlock (chain, account, None)

txid = contract.transact ({"from": account}) .participateCrowdsaleAll ()
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

5.6 Whitelisting crowdsale participants

Here is an example how to whitelist ICO participants before the ICO beings:

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock

from populus.utils.accounts import is_account_locked

p = populus.Project ()

account = "0x001FC7d7E506866aEAB82C11dA515E9DD6D02¢c25" # Our controller account on,,
—~Kovan

with p.get_chain("kovan") as chain:
web3 = chain.web3
Contract = get_contract_by_name (chain, "Crowdsale")
contract = Contract (address="0x06829437859594e19276£87df601436efb5af4f2™)

if is_account_locked (web3, account) :
request_account_unlock (chain, account, None)

txid = contract.transact ({"from": account}) .setEarlyParicipantWhitelist (
—"0x65cbd9%9a48c366f66958196b0a2af81£fc73987bal3", True)

print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

5.6. Whitelisting crowdsale participants 25

ICO smart contracts Documentation, Release 0.1

5.7 Change pricing strategy

To mix fat finger errors:

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()

account = "0Ox" # Our controller account on Kovan

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Contract = get_contract_by_name (chain, "Crowdsale™)
contract = Contract (address="0x")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = contract.transact ({"from": account}).setPricingStrategy ("0x")
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

5.8 Test buy token

Try to buy from a whitelisted address or on a testnet with a generated customer id:

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth utils import to_wei

import uuid

p = populus.Project ()

account = "0x" # Our controller account on Kovan

with p.get_chain("kovan") as chain:
web3 = chain.web3
Contract = get_contract_by_name (chain, "Crowdsale")
contract = Contract (address="0x")

if is_account_locked(web3, account):
request_account_unlock (chain, account, None)

customer_id = int (uuid.uuid4 () .hex, 16) # Customer 1ids are 128-bit UUID v4

txid = contract.transact ({"from": account, "value": to_wei (2, "ether")}) .buy/()
print ("TXID is", txid)

(continues on next page)

26 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

check_succesful_tx (web3, txid)
print ("OK")

5.9 Halt payment forwarder

After a token sale is ended, stop ETH payment forwarder.

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth utils import to_wei

import uuid

p = populus.Project ()

account = "O0x" # Our controller account on Kovan

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Contract = get_contract_by_name (chain, "PaymentForwarder")
contract = Contract (address="0x")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

initial_gas_price = web3.eth.gasPrice

txid = contract.transact ({"from": account, "gasPrice": initial_gas_pricex5}).
—halt ()

print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

5.10 Getting data field value for a function call

You can get the function signature (data field payload for a tranaction) for any smart contract function using the
following:

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth utils import to_wei

import uuid

p = populus.Project ()
account = "0x" # Our controller account on Kovan

(continues on next page)

5.9. Halt payment forwarder 27

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

with p.get_chain("kovan") as chain:

web3 = chain.web3
Contract = get_contract_by_name (chain, "PreICOProxyBuyer")
contract = Contract (address="0x")

sig_data = Contract._prepare_transaction("claimAll")
print ("Data payload is", sig_datal["data"])

5.11 Set early participant pricing

Set pricing data for early investors using PresaleFundCollector + MilestonePricing contracts.

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth_utils import to_wei, from wei

The base price for which we are giving discount %
RETAIL_PRICE = 0.0005909090909090909

contract, price tuples
PREICO_TIERS = [
40% bonus tier
("O0x78c6b7£1£5259406be3bc73ecaleaa859471b9£f3", to_weil (RETAIL_PRICE * 1/1.4, "ether

=")),

35% tier A
("0x6022c6c5de7cd4ab22b070c36c3d5763669777f68", to_wei (RETAIL_PRICE % 1/1.35,
—"ether™)),

35% tier B
("0xd3fa03c67cfbald62325chb6fdfdb5clecd2flcffe", to_wei (RETAIL_PRICE % 1/1.35,
—"ether")),

35% tier C
("0x925904e90c5980ad2cbl16d685254c859f5eddde5", to_wei (RETAIL_PRICE % 1/1.35,
—"ether™)),

25% tier
("Oxee3dfel33e53deb5256f31f63a59cffd14c94019d", to_wei (RETAIL_PRICE * 1/1.25,
—"ether™)),

25% tier B
("0x2d3a6cf3172f967834b59709a12d8b415465bb4c", to_wei (RETAIL_PRICE * 1/1.25,
—~"ether™)),

25% tier C
("0x70b0505c0653e0fedl13d2f0924ad63cdf39%edefe", to_wei (RETAIL_PRICE x 1/1.25,
—"ether™)),

25% tier D
("Ox7cfe55c0084bac03170ddf5da070aad55calb97d", to_wei (RETAIL_PRICE * 1/1.25,

Mothartyy
7T

(continues on next page)

28 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

p = populus.Project ()

deploy_address = "0xe6b645a707005bb4086fale366fb82d59256£225" # Our controller,
—account on mainnet

pricing_strategy_address = "0x9321a0297cde2f181926e9%e6acb5c4£1d97c8£9d0"
crowdsale_address = "0xaa8l17e98eflafd4946894c4476c1d01382cl54el"

with p.get_chain("mainnet") as chain:
web3 = chain.web3

Safety check that Crodsale is using our pricing strategy

Crowdsale = get_contract_by_name (chain, "Crowdsale")

crowdsale = Crowdsale (address=crowdsale_address)

assert crowdsale.call() .pricingStrategy () == pricing_strategy_address

Get owner access to pricing
MilestonePricing = get_contract_by_ name (chain, "MilestonePricing")
pricing_strategy = MilestonePricing(address=pricing_strategy_address)

PresaleFundCollector = get_contract_by_name (chain, "PresaleFundCollector")
for preico_address, price_wei_per_token in PREICO_TIERS:

eth_price = from wei (price_wei_per_token, "ether")

tokens_per_eth = 1 / eth_price

print ("Tier", preico_address, "price per token", eth_price, "tokens per eth",
—round (tokens_per_eth, 2))

Check presale contract is valid

presale = PresaleFundCollector (address=preico_address)

assert presale.call() .investorCount() > 0, "No investors on contract {}".
—format (preico_address)

txid = pricing_strategy.transact ({"from": deploy_address}) .
—setPreicoAddress (preico_address, price_wei_per_token)

print ("TX is", txid)

check_succesful_tx (web3, txid)

5.12 Move early participant funds to crowdsale

Move early participant funds from PresaleFundCollector to crowdsale.

Example:

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth _utils import to_wei, from_wei

from ico.earlypresale import participate_early

presale_addresses = [
"0x78c6b7£1£5259406be3bc73ecaleaa859471b9£3",

(continues on next page)

5.12. Move early participant funds to crowdsale 29

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

"0x6022c6cbde7c4ab22b070c36c3d5763669777£68",
"0xd3fa03c67cfbal062325cb6f4f4bbclecd2flctfe”,
"0x925904e90c5980ad2cbl16d685254c859f5edddeb",
"Oxee3dfe33e53deb5256£31£63a59cf£d14c940194d",
"0x2d3a6cf3172£967834b59709a12d8b415465bb4c",
"0x70b0505c0653e0£fedl13d2£0924ad63cdf39%edefe”,
"0x7cfe55c0084bac03170ddf5da070aa455calb97d",

p = populus.Project ()

deploy_address = "0x" # Our controller account on mainnet
pricing_strategy_address = "0x"
crowdsale_address = "0Ox"

with p.get_chain("mainnet") as chain:
web3 = chain.web3

Crowdsale = get_contract_by_name (chain, "Crowdsale")
crowdsale = Crowdsale (address=crowdsale_address)

for presale_address in presale_addresses:
print ("Processing contract", presale_address)
participate_early(chain, web3, presale_address, crowdsale_address, deploy_
—address, timeout=3600)
print ("Crowdsale collected", crowdsale.call() .weiRaised() / 10%%18, "tokens_
—sold", crowdsale.call() .tokensSold() / 10%%8, "money left", from_wei (web3.eth.
—getBalance (deploy_address), "ether"))

5.13 Triggering presale proxy buy contract

Move funds from the proxy buy contract to the actual crowdsale.

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth utils import to_wei, from wei

p = populus.Project ()

deploy_address = "0x" # Our controller account on mainnet
proxy_buy_address = "0Ox"
crowdsale_address = "0Ox"

with p.get_chain("mainnet") as chain:
web3 = chain.web3

Safety check that Crodsale is using our pricing strategy
Crowdsale = get_contract_by_name (chain, "Crowdsale")
crowdsale = Crowdsale (address=crowdsale_address)

Make sure we are getting special price
EthTranchePricing = get_contract_by_name (chain, "EthTranchePricing")
pricing_strategy = EthTranchePricing(address=crowdsale.call() .pricingStrategy())

(continues on next page)

30 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

assert crowdsale.call () .earlyParticipantWhitelist (proxy_buy_address) == True
assert pricing_strategy.call () .preicoAddresses (proxy_buy_address) > 0

Get owner access to pricing

PreICOProxyBuyer = get_contract_by_name (chain, "PreICOProxyBuyer™)

proxy_buy = PreICOProxyBuyer (address=proxy_buy_address)

txid = proxy_buy.transact ({"from": deploy_address}).setCrowdsale (crowdsale.
—address)

print ("TXID", txid)

txid = proxy_buy.transact ({"from": deploy_address}) .buyForEverybody ()
print ("Buy txid", txid)

5.14 Resetting token sale end time

The token sale owner might want to reset the end date. This can happen in the case the crowdsale has ended and tokens
could not be fully sold, because of fractions. Alternatively, a manual soft cap is invoked because no more money is
coming in and it makes sense to close the token sale.

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth _utils import to_wei, from_ wei

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

p = populus.Project ()

deploy_address = "0x" # Our controller account on mainnet
crowdsale_address = "0Ox"
with p.get_chain("mainnet") as chain:

web3 = chain.web3

block = web3.eth.getBlock ('latest"')
timestamp = block["timestamp"]

15 minutes in the future
closing_time = int (timestamp + 15%60)

Safety check that Crodsale is using our pricing strategy

Crowdsale = get_contract_by_name (chain, "Crowdsale")

crowdsale = Crowdsale (address=crowdsale_address)

txid = crowdsale.transact ({"from": deploy_address}) .setEndsAt (closing_time)
print (crowdsale.call () .getState())

5.15 Finalizing a crowdsale

Example:

import populus
from populus.utils.cli import request_account_unlock

(continues on next page)

5.14. Resetting token sale end time 31

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

from populus.utils.accounts import is_account_locked
from eth utils import to_wei, from wei

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

p = populus.Project ()

deploy_address = "0x" # Our controller account on mainnet
crowdsale_address = "0Ox"
team_multisig = "0x"
with p.get_chain("mainnet") as chain:
web3 = chain.web3

Crowdsale = get_contract_by_name (chain, "Crowdsale")
crowdsale = Crowdsale (address=crowdsale_address)

BonusFinalizeAgent = get_contract_by_name (chain, "BonusFinalizeAgent")
finalize_agent = BonusFinalizeAgent (address=crowdsale.call().finalizeAgent ())
assert finalize_agent.call().teamMultisig() == team _multisig

assert finalize_agent.call () .bonusBasePoints() > 1000

Safety check that Crodsale is using our pricing strategy
txid = crowdsale.transact ({"from": deploy_address}).finalize ()
print ("Finalize txid is", txid)

check_succesful_tx(web3, txid)

print (crowdsale.call () .getState())

5.16 Send ends at

Example:

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()

account = "0x4af893ee43a0aa328090bcfl64dfa535al619c3a" # Our controller account on,,
—Kovan
with p.get_chain("mainnet") as chain:

web3 = chain.web3

Contract = get_contract_by_name (chain, "Crowdsale")

contract = Contract (address="0x0FB81a518dCa5495986C5c2ec29e989390e0E406")

if is_account_locked (web3, account) :
request_account_unlock (chain, account, None)

txid = contract.transact ({"from": account}) .setEndsAt (1498631400)
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

32 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

5.17 Approving tokens for issuer

Usually you need to approve() tokens for a bounty distribution or similar distribution contract (Issuer.sol). Here is an
example.

Example:

import populus
from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

from ico.utils import check_succesful_tx
from ico.utils import get_contract_by_name

P populus.Project ()
account = "Ox" # Our controller account
issuer_contract = "0Ox" # Issuer contract who needs tokens
normalized_amount = int ("123000000000000™) # Amount of tokens, decimal points,,
—unrolled
token_address = "0x" # The token contract whose tokens we are dealing with
with p.get_chain("mainnet") as chain:

web3 = chain.web3

Token = get_contract_by_name (chain, "CrowdsaleToken™)

token = Token (address=token_address)

if is_account_locked (web3, account):

request_account_unlock (chain, account, None)

print ("Approving ", normalized_amount, "raw tokens")

txid = token.transact ({"from": account}) .approve (issuer_contract, normalized_
—amount)

print ("TXID is", txid)
check_succesful_tx (web3, txid)
print ("OK")

5.18 Whitelisting transfer agent

Token owner sets extra transfer agents to allow test tranfers for a locked up token.

Example:

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

o) populus.Project ()
account = "0x51b931lebb6ec8beb049dafeafe389ee2818b1b20" # Our controller account
with p.get_chain("mainnet") as chain:

web3 = chain.web3

Token = get_contract_by_name (chain, "CrowdsaleToken™)

(continues on next page)

5.17. Approving tokens for issuer 33

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

token = Token (address="0x")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = token.transact ({"from": account}) .setTransferAgent ("0x", True)
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

5.19 Reset token name and symbol

Update name and symbol info of a token. There are several reasons why this information might not be immutable, like
trademark rules.

Example:

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

p = populus.Project ()

account = "Ox" # Our controller account
with p.get_chain("mainnet") as chain:
web3 = chain.web3
Token = get_contract_by_name (chain, "CrowdsaleToken™)

token = Token (address="0x")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = token.transact ({"from": account}).setTokenInformation ("Tokenizer", "TOKE")
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

5.20 Read crowdsale variables

Read a crowdsale contract variable.

Example:

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()

(continues on next page)

34 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Crowdsale = get_contract_by_name (chain, "Crowdsale")
crowdsale = Crowdsale (address="0x")
print (crowdsale.call () .weiRaised () / (10%%18))

5.21 Reset token name and symbol

Update name and symbol info of a token. There are several reasons why this information might not be immutable, like
trademark rules.

Example:

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

p = populus.Project ()
account = "O0x" # Our controller account

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Token = get_contract_by_name (chain, "CrowdsaleToken")
token = Token (address="0x")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = token.transact ({"from": account}).setTokenInformation ("Tokenizer", "TOKE")
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

5.22 Reset upgrade master

upgradeMaster is the address who is allowed to set the upgrade path for the token. Originally it may be the
deployment account, but you must likely want to move it to be the team multisig wallet.

Example:

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

p = populus.Project ()

(continues on next page)

5.21. Reset token hame and symbol 35

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

account = "0x" # Our deployment account
team_multisig = "Ox" # Gnosis wallet address
token_address = "Ox" # Token contract address
with p.get_chain("mainnet") as chain:
web3 = chain.web3
Token = get_contract_by_name (chain, "CrowdsaleToken™)

token = Token (address=token_address)

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = token.transact ({"from": account}) .setUpgradeMaster (team_multisigqg)
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

5.23 Participating presale

You can test presale proxy buy participation.

Example:

from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth _utils import to_wei

p = populus.Project ()

with p.get_chain("kovan") as chain:
web3 = chain.web3

PreICOProxyBuyer = get_contract_by_name (chain, "PreICOProxyBuyer")
presale = PreICOProxyBuyer (address="0x4fe8b625118a212e56d301e0£748505504d41377")

print ("Presale owner is", presale.call().owner())
print ("Presale state is", presale.call() .getState())

Make sure minimum buy in threshold is exceeeded in the value

txid = presale.transact ({"from": "0x001fc7d7e506866aecab82cllda515e9dd6ed02c25",
—"value": to_wei (40, "ether")}) .invest ()

print ("TXID", txid)

check_succesful_tx (web3, txid)

5.24 Distributing bounties

There are two commands to support token bounty distribution

36 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

* combine-csvs allows to merge externally managed bountry distribution sheets to one combined CSV distri-
bution file

e distribute-tokens deploys an issuer contract and handles the token transfers

5.24.1 Prerequisites

¢ An account with gas money
¢ A token contract address
e CSV files for the token distribution (Twitter, Facebook, Youtube, translations, etc.)

¢ A multisig wallet holding the source tokens

5.24.2 Merge any CSV files

Merge any or a single CSV files using combine—-csvs. This command will validate input Ethereum addresses and
merge any duplicate transactions to a single address to one transaction.

5.24.3 Deploy issuer contract

Example:

distribute-tokens —--chain=mainnet --
—address=0x1e10231145c0b670e9eeba7f5b47172afa3b6186 —-
—token=0x5af2bel93a6abca9c8817001£45744777db30756 ——-csv-file=combined.csv —-—-address-
—column="Ethereum address" —-—-amount-column="Total reward" —--master-—
—address=0x9%9a60ad6del85c4ea95058601beafl6f63742782a

5.24.4 Give approve() for the issuer contract

Use the multisig wallet to approve() the token distribution.

5.24.5 Run the issuance

Example:

distribute-tokens —--chain=mainnet --
—address=0x1e10231145c0b670e9eeba7£f5b47172afa3b6186 ——
—token=0x5af2bel93a6abca9c8817001£45744777db30756 —-csv—-file=combined-bgx.csv ——
—address—column="Ethereum address" —-—-amount-column="Total reward" —--master-—
—address=0x9a60ad6del85c4ea95058601beafl6f63742782a ——issuer—
—address=0x78d30c42a5f9fb19df60768e4c867b697e24b615

5.25 Extracting Ethereum transaction data payload from a function
signature

This allows you to see what goes into an Ethereum transaction data field payload, when you call a smart contract
function in a transaction.

5.25. Extracting Ethereum transaction data payload from a function signature 37

ICO smart contracts Documentation, Release 0.1

Example:

import populus
from ico.utils import get_contract_by_name

p = populus.Project ()

with p.get_chain("kovan") as chain:
contract = get_contract_by_name (chain, "PreICOProxyBuyer")
With arguments

contract._prepare_transaction ("refund", fn_kwargs={"customerId": raw_id})

function = "refund"

Without arguments

Get a Dayta payload for calling a contract function refund()

sig_data = contract._prepare_transaction (function)

print ("Data payload for {} () is {}".format (function, sig_datal["data"]))

5.26 Splitting a payment

Call PaymentSplitter contract to split the money amount the participants.

Example:

import populus

import binascii

from ico.utils import check_succesful_tx
from ico.utils import get_contract_by_name

p = populus.Project ()
with p.get_chain("mainnet") as chain:

PaymentSplitter = get_contract_by_name (chain, "PaymentSplitter")
web3 = chain.web3

splitter = PaymentSplitter (address="...")

txid = splitter.transact ({"from": "..."}).split ()
print ("TXID", binascii.hexlify (txid))
check_succesful_tx (web3, txid)

38 Chapter 5. Interacting with deployed smart contracts

CHAPTER O

Contract source code verification

* Verifying contracts on EtherScan
* Benefits of verification

* Prerequisites

* How automatic verification works

6.1 Verifying contracts on EtherScan

ICO package has a semi-automated process to verify deployed contracts on EtherScan verification service.

6.2 Benefits of verification

* You can see the state of your contract variables real time on EtherScan block explorer

* You prove that there are deterministic and verifiable builds for your deployed smart contracts

6.3 Prerequisites

¢ You need to have Chrome and chromedriver installed for the browser automation

* You need to have Splinter Python package installed:

pip install Splinter

39

https://etherscan.io/verifyContract
http://brewformulas.org/Chromedriver
http://splinter.readthedocs.io/en/latest/

ICO smart contracts Documentation, Release 0.1

6.4 How automatic verification works

You need to specify the verification settings in your YAML deployment script for deploy-contracts command.
You need to make sure that you have your Solidity version and optimization parameters correctly.

Example how to get Solidity version:

solc —--version

Here is an example YAML section:

Use automated Chrome to verify all contracts on etherscan.io
verify on_etherscan: yes
browser_driver: chrome

solc:
This 1is the Solidity version tag we verify on EtherScan.
For available versions see
https://kovan.etherscan.io/verifyContract2
#
See values in Compiler drop down.
You can also get the local compiler version with:
#
solc —--version
#
Note that for EtherScan you need to add letter "v" at the front of the version
#
Note: You need to have correct optmization settings for the compiler
in populus.json that matches what EtherScan is expecting.
#

version: v0.4.1l4+commit.c2215d46

#
We supply these to EtherScan as the solc settings we used to compile the_
—contract.
They must match values in populus.json compilication / backends section.
These are the defaults supplied with the default populus.json.
#
optimizations:
optimizer: true
runs: 500

When you run deploy-contracts and verify_on_etherscan is turned on, a Chrome browser will automatically open
after a contract has been deployed. It goes to Verify page on EtherScan and automatically submits all verification
information, including libraries.

In the case there is a problem with the verification, deploy-contracts will stop and ask you to continue. During this
time, you can check what is the actual error from EtherScan on the opened Chrome browser.

40 Chapter 6. Contract source code verification

CHAPTER /

Test suite

e Introduction
* About Populus

* Running tests

* Troubleshooting

7.1 Introduction

ICO package comes with extensive automated test suite for smart contracts.

7.2 About Populus

Populus is a tool for the Ethereum blockchain and smart contract management. The project uses Populus internally.
Populus is a Python based suite for

* Running arbitrary Ethereum chains (mainnet, testnet, private testnet)

* Running test suites against Solidity smart contracts

7.3 Running tests

Install first as given in the instructions.
Running tests using tox

export SOLC_BINARY=$(pwd)/script/travis-dockerized-solc.sh export SOLC_VERSION=0.4.18 tox

41

http://populus.readthedocs.io/

ICO smart contracts Documentation, Release 0.1

If solc fails, create a local virtual environment and test populus command locally:

’populus compile

Reasons could include: Docker not running.

Running tests in the current virtual environemtn:

’py.test tests

Run a specific test:

’py.test tests -k test_get_price_tiers

7.4 Troubleshooting

Seeing how it looks like inside Dockerized solc environment:

docker run -it -v ‘pwd : pwd -v ‘pwd /zeppelin: pwd /zeppelin -w ‘pwd —--entrypoint /
—bin/sh ethereum/solc:$SOLC_VERSION

This lands you to in shell in Docker mounted volume.

42 Chapter 7. Test suite

CHAPTER 8

Chain configuration

* Introduction
* Default configuration

» Starting Ethereum node and creating deployment accounts

Account unlocking

Go Ethereun for mainnet

Parity with Kovan testnet

Getting Kovan testnet ETH

8.1 Introduction

ico package uses underlying Populus framework to configure different Ethereum backends.
Supported backend and nodes include

* Go Ethereum (geth)

* Parity

¢ Infura (Ethereum node as a service)

¢ Quicknode (Ethereum node as a service)

 Ethereum mainnet

* Ethereum Ropsten test network

* Ethreum Kovan test network

e ... or basically anything that responds to JSON RPC

43

ICO smart contracts Documentation, Release 0.1

8.2 Default configuration

The default configuration set in the packge distribution is in populus.json file.

Edit this file for your own node IP addresses and ports.

The default configuration is
e http://127.0.0.1:8545 is mainnet JSON-RPC, populus.json network sa mainnet
e http://127.0.0.1:8546 is Kovan JSON-RPC, populus.json network sa kovan
e http://127.0.0.1:8547 is Kovan JSON-RPC, populus.json network sa ropsten

Ethereum node software (geth, parity) must be started beforehand and configured to allow JSON-RPC in the particular
port.

For more information about populus.json file refer to Populus documentation.

8.3 Starting Ethereum node and creating deployment accounts

Below are two examples for Go Ethereum and Parity.

Note: We recommend using Kovan or Ropsten testnet for any testing and trials, because of faster transaction confir-
mation times. However, as the writing of this, Kovan testnet is only available for Parity and not for Go Ethereum. Go
Ethereum and Parity have a different command line syntax and account unlocking mechanisms. It might take some
effort to learn and start using both.

8.3.1 Account unlocking
When you make an Ethereum transaction, including deploying a contract, you need to have an Ethereum account
with ETH balance on it. Furthermore this account must be unlocked. By default the accounts are available only

in an encrypted file in the hard disk. When you unlock the account you can use it from the scripts for performing
transactions.

8.3.2 Go Ethereun for mainnet

Example how to start Go Ethereum JSON-RPC for mainnet:

geth --fast --ipcdisable --rpc —--rpcapi "db,eth,net,web3,personal" --verbosity 3 —--
—rpccorsdomain "+«" —--cache 2048

You can create a new mainnet account which you will use a deployment account from geth console:

geth attach http://localhost:8545

Create a new private key from a seed phrase in geth console:

> web3.sha3 ("my super secret seed phrase")
0x000000. ..

Now import this 256-bit number as a geth account private key:

44 Chapter 8. Chain configuration

https://github.com/TokenMarketNet/ico/blob/master/populus.json
http://populus.readthedocs.io/en/latest/config.html#custom-chains-using-the-externalchain-class

ICO smart contracts Documentation, Release 0.1

’> personal.importRawKey ("0x00000", "my account password")

You also need to unlock your deployment every time you do a deployment from geth console.

Example:

’qeth attach http://localhost:8545

Then unlock account for 1 hour in geth console:

’personal.unlockAccount("OXOOOOOOOO...", "my account password", 3600)

8.3.3 Parity with Kovan testnet

First start parity —chain=kovan to generate the chaindata files and such.

Connect to the Parity Ul using your web browser.

Create a new Kovan testnet account. The account password will be stored in plain text, so do not use a strong password.
Create a file password.txt and store the password there.

Example how to start Parity JSON-RPC for Kovan testnet, unlocking your Kovan account for test transactions. It
will permanently unlock your account using the password given in password.txt and listen to JSON-RPC in port
http://localhost:8547.

parity —--chain=kovan --unlock 0x001fc7d... —--password password.txt --jsonrpc-apis
—"web3,eth,net,parity, traces, rpc,personal” --jsonrpc-port 8547 --no-ipc —--port 30306
———tracing on —--allow-ips=public

8.3.4 Getting Kovan testnet ETH

Your options
* Kindly ask people to send you Kovan ETH (KETH) on the Kovan Gitter channel

» Use Parity provided SMS authentication to get KETH. in this case you need to start the Parity node in mainnet
first, import in the same account and then get some real ETH balance for it.

8.3. Starting Ethereum node and creating deployment accounts 45

https://github.com/kovan-testnet/faucet#gitter-channel-manual-github-verification
https://github.com/kovan-testnet/faucet#icarus-faucet-automated-sms-verification

ICO smart contracts Documentation, Release 0.1

46

Chapter 8. Chain configuration

CHAPTER 9

Design choices

* Introduction
» Timestamp vs. block number

* Crowdsale strategies and compound design pattern

* Background information

9.1 Introduction

In this chapter we explain some design choices made in the smart contracts.

9.2 Timestamp vs. block number

The code uses block timestamps instead of block numbers for start and events. We work on the assumption that
crowdsale periods are not so short or time sensitive there would be need for block number based timing. Furthermore
if the network miners start to skew block timestamps we might have a larger problem with dishonest miners.

9.3 Crowdsale strategies and compound design pattern

Instead of cramming all the logic into a single contract through mixins and inheritance, we assemble our crowdsale
from multiple components. Benefits include more elegant code, better reusability, separation of concern and testability.

Mainly, our crowdsales have the following major parts
* Crowdsale core: capped or uncapped

* Pricing strategy: how price changes during the crowdsale

47

ICO smart contracts Documentation, Release 0.1

* Finalizing strategy: What happens after a successful crowdsale: allow tokens to be transferable, give out extra
tokens, etc.

9.4 Background information

* https://drive.google.com/file/d/0ByMtMw2hulOEN3NCaVFHSFdxRzA/view

48 Chapter 9. Design choices

https://drive.google.com/file/d/0ByMtMw2hul0EN3NCaVFHSFdxRzA/view

cHAaPTER 10

Other

» Importing raw keys

* Flattening source code for verification

10.1 Importing raw keys

You often need need to work with raw private keys. To import a raw private key to geth you can do from console:

’web3.personal.importRawKey("<Private Key>", "<New Password>")

Private key must be without Ox prefixed hex format.
More information

* http://ethereum.stackexchange.com/a/10020/620

10.2 Flattening source code for verification

Here is a snippet that will expand the source code of all contracts for the generated build/contracts. json file
and embed the source inside the file. This will allow easier verification (reproducible builds) when using ABI data.

You can run from Python shell:

import populus
import json
from ico.importexpand import expand_contract_imports

p = populus.Project ()

(continues on next page)

49

http://ethereum.stackexchange.com/a/10020/620

ICO smart contracts Documentation, Release 0.1

(continued from previous page)

data = Jjson.load(open ("build/contracts.json", "rt"))
for contract in data.values():

This was a source code file for an abstract contract
if not contract["metadata"]:

continue
targets = contract["metadata"]["settings"]["compilationTarget"]
contract_file = list (targets.keys()) [0] # "contracts/AMLToken.sol": "AMLToken"

Eliminate base path, as this will be set by expand_contract_imports
if "zeppelin/" not in contract_file:

contract_file = contract_file.replace("contracts/", "")
else:

pass

contract_file = contract_file.replace("zeppelin/", "zeppelin/contracts/")
source, imports = expand_contract_imports(p, contract_file)
contract ["source"] = source

Write out expanded ABI data
json.dump (data, open("build/contracts-flattened. json", "wt"))

50 Chapter 10. Other

cHAPTER 11

Commercial support

Contact TokenMarket for launching your ICO or crowdsale

Tokenbarket
Crowdsale
contract
walkthrough

Minimum funding goal not
reached, waiting for owner
to close the crowdsale

Token transferable, founder
and bounty affocations
issued

¥
Ty

Success

I

Finalized

Preparing

PreFunding

Funding

Setting up contract varables

Waiting for start time

Accepting deposils

End time passed, minimum

R funding goal not reached

Contributars can claim back

Ref { Lk
efunding their invesments

51

https://tokenmarket.net/ico-professional-services

ICO smart contracts Documentation, Release 0.1

52

Chapter 11. Commercial support

cHAPTER 12

Links

Github issue tracker and source code

Documentation

53

https://github.com/tokenmarketnet/ico
https://ico.readthedocs.io/en/latest/

	Introduction
	Contracts
	Installation
	Command line commands
	Interacting with deployed smart contracts
	Contract source code verification
	Test suite
	Chain configuration
	Design choices
	Other
	Commercial support
	Links

